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Abstract. We present a first-principles parameter-free calculation of the electronic densities of 
states. spectral functions and electrical resistivity of liquid La based on the tight-binding linear 
muffin-tin orbitlls (la L M ~ )  and the recursion method. Computer-generated 600-panicle cubic 
clusters are used models of liquid La. Elechical resistivity is calculated using the Kubo- 
Greenwood formula and the recursion method applied to the n -~m Hamiltonians for the model 
clusters. M a l  decomposition of conductivity, in order to assess the separate contributions from 
the ( la-LM~) s, p and d states, is presented. The contribution of the uoss channels (s-p, pd, 
and s-d) to the diffusivity function is found to be substantial and negative, reducing the total 
value of the conductivity by almost 50%. The calculated resistivity is about '23% in excess of 
the measured value. Sources of error in our calculation are discussed and ways of improving 
the results within the framework of the TB-LMTO scheme are suggested. 

1. Introduction 

Electronic siructure and electrical resistivity of liquid La, and several other transition metals, 
have been calculated by Ballentine and co-workers [14] using a linear combination of 
atomic orbitals (LCAO) basis. These authors used computer-generated model clusters of 
365 atoms to represent the liquids, and the recursion method [5] together with the Kubo- 
Greenwood formula 16.71 was employed to compute the electronic density of states (DOS) 
and resistivity. The resistivity of liquid La was found to be dominated by the d states, i.e., the 
eigenstates that could be described mainly by a superposition of d orbitals centred on various 
atoms. The situation was found to be similar in other liquid transition metals where the Fermi 
level is well inside the d band. These calculations revealed the inappropriateness of the 
use of the diffraction model [SI, or the extended Ziman theory, in describing the electronic 
conduction in strong-scattering disordered metals. The diffraction model assumes that the 
conduction electrons possess well defined wave vectors, and describes their propagation 
via the Boltzmann equation. However, the wave vector k associated with an electron state 
has an uncertainty of approximately the reciprocal of the mean free path, which can be 
as small as the average interatomic spacing in these highly resistive disordered metallic 
systems. Clearly k is no longer a good quantum number to describe the electron states. 
The calculations of Ballentine and co-workers have clearly shown that in these partially 
filled d-band liquid metals conductivity is dominated by d states, that do not possess well 
defined k vectors. Even if one assumes that conduction is via states that can be labelled 
with IC vectors (e.g. the s states), a practical difficulty in employing the diffraction model 
arises in the estimation of the Fermi wave vector k ~ ,  determined by the number density of 
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such electrons [9,10]. In order to calculate the resistivity of liquid La, Delley and Beck 
[9] assumed that conduction was via s states only, yielding 0.5 or fewer current carriers 
per atom, whereas Waseda and co-workers [lo] assumed that s and d states were equally 
conductive, yielding three carriers per atom. 

On the grounds of the reasons discussed above Ballentine and co-workers [3,4,11,12] 
argued that the conductivity of strongscattering 4 - b a n d  metalic system is best calculated 
via methods that treat all electronic states on equal footing, without any apriori assumption 
regarding their role in the process of conduction. They proposed a calculation scheme 
based on the Kubo-Greenwood formula [6,7] and the recursion method [5], which provides 
a real-space (as opposed to lc-space) treatment of the properties of topologically disordered 
systems in a tight-binding (TB) basis. Ballentine and co-workers used the Anderson-Bullett 
[ 13,141 (chemical pseudopotential) scheme to obtain TB-LCAO Hamiltonians for computer- 
generated clusters representing liquid La and other liquid transition metals. In implementing 
the Anderson-Bullett scheme the authors were forced to use two adjustable parameters that 
were fitted to the band structure of solid (KC) La and used subsequently in the liquid-state 
calculation. 

In this work we present the electronic structure and the conductivity of liquid La by 
using the method of Ballentine and co-workers [1-4,11,12] together with the first-principles 
TB linear muffin-tin orbital (LMTO) [ 15-17] basis. The motivation here is to perform a first- 
principles calculation of electronic structure and conductivity of liquid La (i) based on 
density functional theory, (ii) without the use of any parameters fitted to experiments, and 
(iii) without the apriori assumption of the existence of k vectors labelling the conduction- 
electron states. Recently we have presented similar calculations for the 3d liquid transition 
metals [18], along with a detailed discussion of the natural advantage and suitability of the 
TB-LMTO basis for such calcu~ations. 

The remainder of this paper is divided into the following sections. In section 2 we 
describe the construction of the 600-particle clusters used in the calculation. In section 3 we 
describe the electronic structure. In section 4 we present the TB-LMTO recursion calculation 
of resistivity. In section 5 we discuss possible sources of errors and ways of improving 
the present resistivity calculation. To our knowledge the only other first-principles real- 
space calculation of transport properties in disordered metals is that of Zhao et al [ 19,201, 
who have studied the transport and optical properties in some metallic glasses using the 
orthogonalised l inea  combination of atomic orbitals (OLCAO) method. Instead of using 
the recursion method, they used exact diagonalization of the matrices involved in order to 
compute the eigenfunctions and related properties. 

S K Bose et a1 

2. Simulation of the liquid clusters 

600-particle clusters with cubic boundaries were generated using the Monte Carlo method 
based on the Metropolis 1211 algorithm discussed extensively in the literature [22]. We 
considered the two-body potential proposed by Ballentine [ 11 in calculating the energies of 
various configurations. The number density for the clusters was chosen to be 0.0257 A-3, 
which corresponds to the experimental number density in liquid La at 1070°C 1231. The 
clusters were surrounded by periodic replicas, thus avoiding the surface effects in considering 
the energy of interaction of an atom with its neighbours. The simulation was continued 
until the fluctuations in energy no longer showed any systematic component, and the pair 
distribution function, g ( r ) ,  calculated for the cluster reached a stable limit. The form of the 
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two-body potential for liquid La given by Ballentine [ l ]  is 

c(x-6 - x-4) + H x < 2 
I O  x > 2  

U ( r )  = 

with X = r/ro,ro = 5.669 a.u., c = 1.3 eV, and H = 0.0469 eV. This form was 
suggested by inversion of the hypernetted-chain equation 1241 based on the measured 
structure factor [23]. The value of the scale parameter ro was adjusted to produce the 
correct radius of the repulsive core. The simulation was carried out for about 3000 steps, 
i.e., each particle was given 3000 trials to move. The actual temperature of simulation was 
1700 K, higher than the temperature (1343 K) at which the experimental pair distribution 
function was considered, simply to improve the agreement between theory and experiment 
for this quantity. The pair distribution functions, g ( r ) ,  of two such clusters thus generated 
(histogram) are compared with the experimental result [U] (smooth curve) in figure 1. We 
tried changing the parameters ro and using two different constants in front of the inverse 
sixth- and fourth-power terms in (1) in order to obtain a better agreement between the 
theoretical and experimental g(r ) .  No significant improvement over the pair distribution 
function shown in figure 1 was achieved. 

3. Electronic structure 

In the LMTO method 116,171 space is divided into muffin-tin spheres centred at various 
atomic (if necessary, also interstitial) sites R. In the tightest-binding representation, a, an 
LMTO basis orbital of (collective) angular momentum index L = (e ,  m), centred at site R, 
is given, in the atomic sphere approximation (ASA) by the expression 

The function q 5 ~ ~  is the solution of the wave equation inside the sphere of radius S R  

at R for some reference energy E , R ~  and is normalized within the sphere. The potential 
inside the spheres is calculated using the density functional theory. The radial part of the 
function $iL is related to the energy derivative of at the reference energy. The 
expansion coefficients h" in (2) are given by 

h:L,R,Lf = (."ne - EVRe)JRR8&L' + (a'.&)'''S&pL,( de RL, )1/2 (3) 

where c& and d;l, are potential parameters (PPs) to be obtained from the function q5& at 
the sphere boundary at R (see (3.52) amd (3.53) of 1171). S" is the screened structure 
matrix whose elements, in the tighest-binding representation, are essentially zero beyond 
the second shell of neighbours in all close-packed structures. The functions q5 and @ are 
truncated outside the sphere at R. Thus all TB-LMTO orbitals, irrespective of the L character 
of the function q5 in (Z), are short-ranged. Through the second term on the RHS of (2) a TB- 
LMTO orbital centred about the site R depends on the spatial arrangement and the chemical 
nature of the atoms in the neighbourhood of R. This makes them a natural choice for the 
description of topologically disordered systems. Note also that the L' sum in (2) destroys 
the pure t ( e ,  m) character of a TB-LMTO orbital xiL,, although, in many cases, the deviation 
from the pure L character may be small. 
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Figure 1. A comparkon of the experimental pair disvibution function g ( r )  [23] in liquid La at 
1070T (smooth dashed curve) with those calculated (histog") for Ole 600-pnnicle liquid La 
clusters 

The Hamiltonian and the overlap matrices for the basis represented by (2) are given by 

H = h + hoh + (1 i ho)E,(I+ oh) (4) 

O=(xIx)=( I+ho) ( l+oh) .  (5) 

(with the neglect of a small term) 

In (4) and (3, 1 is the unit matrix and we have consistently dropped the subscripts R and L 
as well as the superscript a. The matrix 0 is diagonal i n  R L  representation and its value is 
determined by the logarithmic derivative of the function $ at the sphere boundary at R (see 
(3.48) of [17]). The Lowdin-orthonormalized Hamiltonian in the ASA assumes the form 
H") = E,+h-hoh+hohOh-hohohoh+~.. =H"'-hoh+hohoh-hohohoh+~~. 

(6) 

(7) H"' = E,  + h. 
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As shown in (5), the parameter o determines the degree of non-orthogonality of the 
basis. Solving the eigenvalue problem for H(') only is equivalent to neglecting the non- 
orthogonality of the TB-LMTO basis. As seen from (6) this non-orthogonality can only be 
incorporated at the cost of increasing the range of the Hamiltonian. Although the recursion 
calculation can be carried out with an approximate form of H(*) (= H(') - hoh) [25], in 
this work we restrict ourselves to Hc') in calculating the DOS and conductivity. The Fermi 
level, EF, determined from the DOS obtained with H") is close to the reference energy, E,, 
for d orbitals (see table 1 and figure 2). So the error in the DOS near E F  due to the use of 
H(') is expected to be small. 

Table 1. m-LMIO ptential p m e t e r s  obtained by performing se!f-consistent LMTO cdcul3tions 
for FCC La al the density of liquid L3 ai 1070T (0.0257 atoms A-'). 

E (Ryd) c (Ryd) dt I2  (Ryd I p )  o (Ryd-') 

s -0.25825 -0.18383 0.29072 -0.98788 
D -0.20551 0.10920 0.14258 - 1.773 96 
d -0.20204 -0.00851 0.14024 -0.88636 

20 I I 

-0.5 0 0.5 

Energy (Ry) 
Figure 2. The density of electronic states for the 600-pmicle liquid clusters obtained with the 
rE.LMm Hamiltoniul H(') (see text for details): sholi-dashed line, s component, long-short- 
dashed line, p component; solid line, total Dos. The vertical line shows the position of the Fermi 
level. 

We have used the TB-LMTO Hamiltonian Het) to calculate the DOS for the 600-particle 
liquid clusters with periodic boundary conditions using the recursion method [SI. Although 
self-consistency in an average sense could be achieved as in the TB-LMTO recursion 
calculation of Nowak et a1 [26], we have relied on the fact that the potential parameters are 
the true atomic quantities in the Hamiltonian. They are obtained from the solutions of the 
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wave equation at the sphere boundary, and hence depend on the volume per atom. We have 
performed self-consistent scalar-relativistic LMTO-ASA calculations using an s, p, d basis 
and combined corrections for La in the FCC structure with lattice parameters determined 
by the number density in the liquid phase [23]. The potential parameters thus obtained are 
used in the construction of the liquid-state Hamiltonian. The FCC structure was chosen to 
obtain the potential parameters because the coordination number in the liquid is close to 
that of an FCC solid. In table 1 we present the TB-LMTO PPs for FCC La at a number density 
of 0.0257 atoms the density of liquid La at 1070°C 1231. In the TB-LMTO recursion 
calculation of [26], where self-consistency was achieved in the potential averaged over a 
number of atoms, the PPs were found to vary very little from one atom to another [27]. 
Thus we believe that our method of determining the PPs for the liquid state is quite reliable. 
Note also that our PPs are based on first-principles calculations and are not empirical. 

Local densities of states (LDOSS) of twenty atoms in the inner region of two clusters were 
averaged to obtain the DOS for liquid La. The continued-fraction expansion of the Green 
function was terminated using the prescription of Allan [28] (see [26] for a discussion of 
the actual version of the terminator used), and Beer and Pettifor [29]. The two methods of 
terminating the Green function yielded very similar results. In figure 2 we show the DOS for 
liquid La obtained with the Hamiltonian H") using the Beer-Pettifor [29] terminator. For 
reference purposes, in figures 3 and 4 we show the band structure and the DOS, respectively, 
for FCC La with a lattice parameter corresponding to liquid La density, obtained by the 
standard LMTO-ASA method. The DOS in figure 2 has a much smaller band width than that 
in figures 3 and 4, indicating the main difference between the TB-LMTO and standard LMTO 
Hamiltonians. Because states are squeezed into a smaller band width, the value ~ ( E F )  of 
the DOS at the Fermi level, obtained via H('), is somewhat larger than is expected from the 
standard LMTO resulr However, for the same reason the diffusivity of the eigenstates of 
Hc') should be lower than that of the eigenstates of the standard LMTO Hamiltonian. This 
means that the error in the conductivity, which is the product of n(EF) and the diffusivity 
(see next section), due to the use of H('), is smaller than the errors in ~ ( E F )  and diffusivity 
individually. 

Spectral functions [l, 25,301 are useful in studying the effect of disorder on the various 
spectral (s. p, or d) components of the energy eigenstates and in examining the presence 
of residual dispersion (energy versus wave vector) relations in the disordered phase. Since, 
unlike LCAO or similar bases, the TB-LMTO orbitals lack pure L character, resolution of 
the eigenfunctions into pure s- or d-like components is not possible. However, a study of 
TB-LMTO spectral functions is still of interest. We consider the DOS projected onto a running 
wave of the form 

S K Bose et a1 

and compute the spectral functions 

n m  = CnW 
m 

Here Rj represent the (atomic) sites at which the TB-LMTOs are centred. In figure 5(a) 
and (b )  we show two views of the spectral functions calculated for the TB-LMTO s and d 
orbitals, respectively, for liquid La. The front view is useful in picking up any change in 
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0.4 r- 

Figure 3. The band suucture of FCC La at a number density equal to that of liquid La at 1070°C 
using the standard LMTO-ASA method. 

40 

0 - 0.4 -0.2 0 0.2 0.4 

Energy ( R Y )  

Figure 4. The density of states of FCC La at a number density equal to that of liquid La at 
1070T using the standard LMPASA method. 

the position of the peak as a function of k, while the side view shows clearly the change 
in the height of the peaks. The k values chosen extend from zero to 2 r / a ,  where a is 
the lattice parameter for FCC La at the liquid La density. For low k both s and d spectral 
functions are peaked, but about halfway between the k values corresponding to r and X 
points the peaked structure is lost, and the spectral functions resemble the average s and 
d DOS, indicating that the coherence between various terms in (7) has been lost. There is 
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very little dispersion to be discerned from the d spectral functions, while the dispersion in 
the s spectral function is much less than expected from the band structure in the FCC phase 
(figure 3). The p spectral functions (not shown here) are qualitatively similar to d spectra, 
i.e., exhibit some peaks for low k, soon changing to local average p DOS. The behaviour of 
s spectral functions is in particularly sharp contrast with the s-state spectral functions in an 
LCAO basis where, as discussed in detail in [ 11, they are found to retain their propagating 
character and display distinct dispersion relations, for low as well as high k values. The 
difference is primarily due to the fact that the TB-LMTO s orbitals show deviations from 
spherical symmetry, and thus are influenced by positional disorder to a larger extent than 
atomic s orbitals with full spherical symmetry. Note also that the dispersion shown by even 
the propagating states of H(') would be smaller than that gleaned from the band structure 
of figure 3 (due to the standard L m  Hamiltonian) because of the smaller band width of 
H('). 

S K Bose et a1 

4. Resistivity 

The Kubo-Greenwood [6,7] formula for the diagonal elements of the zero-temperature DC 
conductivity tensor in the eigenfunction representation can be written as 

where S2 is the volume of the sample, h is Planck's constant, EF is the Fermi energy, and 
uj is the j component of the velocity operator. Relating the delta function to the imaginq  
part of the Green function and using the expression 

m 

where 1.. .)€,=E implies an average over the eigenfunctions with energy E ,  and g(E) is 
the sample DOS at energy E,  (IO) can be written in the physically transparent form [31] 

Here a, is the volume per atom, n(&) is the DOS per atom, and D(&) is the diffusivity 
given by 

D(EF)  is proportional to the average local DOS projected on to the states ujIEm) and can 
be calculated using the recursion method 1.51. The eigenvectors ]E,) are calculated by the 
same filtering technique as used by Ballentine and co-workers [24,11,12,30] and given 
originally by Kramer and W&re [32]. 

The velocity operator is given by 
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-0.5 0.0 03 

Energy (Ry) 

Figure 5. (a) s- and (b)  d-state spectra in liquid La obtained by using the Hamiltonian H(’1. 
The k-values range from zero to ZnJo. where a is the lattice parameter of pcc La at the density, 
0.0257 atoms .k3, of liquid La at 1O7OcC. 

The matrix elements of the velocity operator in the TB-LMTO basis (2) are 

(uj)py = C(HB~X& - x,&HSy)ip (1% 

where the subscripts denote the combined angular momentum and site indices (R, L). The 
6 
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matrix elements, x i s ,  of the position operator can be written as 

S K Bose et al 

where x i  is the x i  coordinate of the atomic nucleus on which the orbital fl  is centred. The 
second term on the RHS of (16). the dipole term, is assumed to be small and neglected as in 
the previous LCAO recursion calculations [I 1,12]. In the present calculation we also neglect 
the non-orthogonality of the TB-LMTO basis. Then from (15) the matrix elements of the 
velocity operator neglecting the dipole term, are 

In this work we have performed all calculations of the diffusivity function using (17). 
In [18] we presented results for the resistivity of liquid 3d transition metals, where the 
non-orthogonality of the TB-LMTO basis in evaluating the matrix elements of the velocity 
operator is taken into account in an approximate way. Partial justification for the neglect 
of the non-orthogonality of the basis in this calculation is the small difference between the 
Fermi level and the reference energy, E,, for the d orbitals. 

Obtaining the eigenvectors via the filtering method [32] discussed above is the most 
time-consuming part of the calculation. The larger the band width, the larger is the 
computation time. For the Hamiltonian H‘”, 1900-2200 filtering operations were typically 
needed to reduce the RMS energy spread, AE,  to less than 0.02 Ryd. The CPU time required 
for this on a Cray XMP/24 machine was - 250 s (less than 5 min). For the Hamiltonian 
H(*). which has a much larger band width, filtering to within A E  = 0.02 Ryd was not 
possible even with half an hour of CPU time on the same machine. This forced us to 
calculate the diffusivity with the first-order Hamiltonian H(’) only. Fifteen eigenvectors 
from each of the two clusters, with energy withii 0.02 Ryd of EF. were used in computing 
the diffusivity. 

In calculating the diffusivity via the recursion method one faces the problem of 
terminating the continued-fraction representation of the Green function, just as in computing 
a local Dos. A discussion on the various ways of terminating the continued fraction, and their 
effect on the calculated diffusivity, appears in our recent publication [ 181. The fluctuations in 
the diffusivity from one eigenvector to another were larger (- 10-15%) than the fluctuations 
in the diffusivity for the same eigenvector calculated with various terminators. The results 
presented here are based on the Beer-Pettifor [29] terminator. The average value of the 
calculated resistivity was - 185pQ cm (with - 15% total spread), 23% higher than the 
measured value of - 150pQ cm 1331. Although the calculated value is high compared 
with experiment, the agreement is satisfactory in view of the fact that the calculation is 
free from parameters fitted to either experiments or crystal band structure. Readers should 
also note. that in order to calculate the conductivity, we have used (9), the zero-temperature 
expression. Thii expression results from the finitetemperature Kubc-Greenwood formula 
by replacing the Fermi-Duac distribution function with a step function appropriate for 
zero temperature. The effect of replacing the Fermi-Dirac distribution function with the 
step function is negligible, because the liquid temperature is much smaller than the Fermi 
temperature. The main temperature dependence of the conductivity originates from the 
changes in the structure of the liquid with temperature. Thus in the present approach, a 
proper temperature-dependent calculation is possible only if the structure of the liquid at 
different temperatures is properly represented via the clusters used in the calculation. Since 
our cluster was prepared to match the experimental pair distribution function at 1O7O0C, 
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we can say our calculated resistivity is for that temperature. The experimental value of 
15OpQ cm quoted above (see Metals Reference Book [33]) is for 1100°C. 

By resolving the eigenvectors at EF into their orbital components we can estimate the 
contribution to the resistivity purely from the (diagonal) s, p, and d channels as well as 
the contributions from the mixed (off-diagonal) channels. Following the notation of [3], 
[4], [Ill, [12], and [30], we denote by D,, D,, and Dd the contribution of s, p, and d 
orbitals, respectively, to the full diffusivity divided by the fractional s, p, or d component 
of the DOS. The s and p characters of the states at the Fermi level fluctuate between IO 
and 15% each, while 7 0 4 0 %  of the states are d like. The diffusivities Dd and D, of 
the d and p channels, respectively, are similar and about a factor of three to four lower 
than the diffusivity Ds of the s channel. Thus the contribution of the p states to the 
conductivity is the least, being about 17% of the d contribution, while the contribution of 
the s states to the conductivity is about half the d contribution. The relative magnitudes 
of the s- and d-state contributions to the conductivity is thus somewhat different from the 
empirical LCAO (s-d band, without p states) calculation of Ballentine and co-workers [3,4] 
(the agreement improved if the p- and d-state contributions in our calculation are added 
and then compared with the s-state contribution), but the conclusion that the conductivity 
is dominated by the slow-moving d states due to their larger weight at the Fermi level is 
still maintained. One important difference from the previous LCAO calculations [3,4] is 
that the contribution from the off-diagonal channels or the cross terms is significant. The 
off-diagonal contribution to conductivity is negative, and roughly 4040% of the diagonal 
contribution. In the calculations of [3] and [4] the off-diagonal contribution was found to 
be negligible (less than 2% of the diagonal contribution). Thus hybridization between the 
s, p, and d orbitals has strong effect on the conductivity, seriously impeding the process of 
conduction. 

5. Summary and discussion of results 

The principal features of the present calculation are that it is free from any fitted parameters, 
and it could be carried out with the computational ease of an empirical tight-binding 
calculation. However, the computational ease causes some loss of accuracy. The sources 
of errors, in order of  perceived importance, can be described as follows. (i) The velocity 
matrix elements were calculated using (17), i.e., by replacing the overlap matrix 0 by 
the identity matrix and by neglecting the dipole term. Although the neglect of the non- 
orthogonality of the basis can be justified due to the small difference between EF and 
the d-orbital reference energy, the smallness of the dipole term in (16) is an untested 
assumption. It is possible that in the LCAO calculations of 131, [41, [I l l ,  1121, and [30], 
where the basis consisted of only s and d atomic-like orbitals, the relative error due to this 
neglect was small, since the s and d orbitals on the same atom could not be connected via the 
position operator, and the matrix elements connecting neighbouring orbitals are expected 
to be small. In calculations including the p orbitals, the s-p and p-d matrix elements 
for the same atom are non-zero, and neglecting all such terms is not readily justified. In 
fact, large negative contributions to the conductivity from the cross (non-diagonal) channels 
in our calculation may be partly due to errors in the velocity matrix elements. (ii) The 
calculations of diffusivity should be performed with a Hamiltonian more accurate than H('). 
Diffusivity is crucially dependent on the nature of the eigenfunctions at the Fermi level. 
Although the eigenvalues and therefore n(i?F) obtained with Hc') may be accurate, the 
eigenfunctions of H") themselves may not be accurate enough for calculating conductivity. 
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(iii) It is quite likely that there are non-negligible contributions from the f states that have 
not been considered in the present calculation. The omission of the f orbitals may partly be 
responsible for the large d contribution to the conductivity. However, in the present cluster 
calculation with 600 particles, the inclusion of seven f orbitals per particle will increase the 
size of the Hamiltonian matrix well beyond the available computer memory. Thus although 
we recognize the potential importance of the d states, we are unable to include these in the 
calculation. (iv) There are errors due to the real-space method used, associated with the 
finite cluster size (which affects the values of the calculated recursion coefficients), and the 
energy window used in filtering the eigenvectors out of the initial randomly chosen vectors 
in the TB-LMTO space. Finite cluster size affects the diffusivity results, via errors in the 
eigenfunctions as well as the recursion coefficients, more severely than the DOS. Also, for 
a better configurational averaging one should consider a large number of clusters, possibly 
obtained via different choices of pair potentials, and different techniques. Our results are 
based on two clusters. Additional studies involving similarly prepared clusters (i.e., using 
Monte Carlo simulation and the same pair potential) did not significantly alter these results. 
This is perhaps because they all had similar g(r),  with the first peak somewhat higher and 
narrower than seen by the experiment. In principle, even clusters with very similar g(r)  can 
give rise to different results, because of differences in higher-order correlation functions. 
However, our clusters did not reveal such differences. 

One can question the appropriateness of the Kohn-Sham orbitals for calculating transport 
properties, as these can be viewed simply as theoretical artifacts of a total-energy calculation, 
and not as the true eigenfunctions. However, they are known to describe some Fermi-surface 
properties correctly, and the present calculation is based on an apriori assumption of their 
suitability in describing electronic transport. 

The validity of the Kubdreenwood formula [6,7] itself for the calculation of resistivity 
of highly disordered and inhomogeneous systems has been addressed by Morgan and 
Ghassib [34]. They considered the effect of the internal fields (due to non-uniform charge 
distribution) on the scattering of electrons. The effect of the correction to the Kubo- 
Greenwood formula proposed by them is expected to be important only in multicomponent 
systems, with the components having vastly different conductivities. 

Point (i) can be addressed at the cost of some additional computation. Since the 
expressions of the TB-LMTO orbitals are available, the matrix element of the position operator 
for two such orbitals can be calculated exactly, instead of using (16) and neglecting the 
dipole term. Point (ii) involves the use of the proper Hamiltonian in the calculation of 
diffusivity. Although the DOS calculation with H(') can be justified to some extent on 
account of the small difference between EF and the reference energy, E,  (for the d orbitals), 
the diffusivity calculation with H(') is not sufficiently accurate. Since the computation 
of diffusivity with H(z) is prohibitively time consuming, what we need is a Hamiltonian 
that is as tight binding as H('), and at the same time describes the states at the Fermi 
level accurately. One way to tackle the problem within the T B - L m  scheme would be to 
recalculate the potential parameters (to be used in the diffusivity calculation) by shifting the 
reference energies, E, ,  to the Fermi level. This has been discussed in greater detail in our 
recent publication [ 181. 

To summarize, we have used the TB-LMX) recursion method for a first-principles 
calculation of resistivity of liquid La. The calculation is free from fitted parameters and is 
based on density functional theory. The calculated resistivity is around 23% in excess of 
the measured value. s states at the Fermi level are found to be three to four times more 
diffusive than the p and d states, but the contribution to the conductivity from the d states 
is roughly double that from the s states. The cross-channels (s-p, pd, s-d) are found to 
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have a negative contribution to conductivity, amounting, in magnitude, to approximately 
half the contribution from the direct (s-s, p-p, d-d) channels. We have indicated the likely 
sources of error in our calculation and suggested ways of overcoming them within the LMTO 
formalism. 
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